

Color and Nitrogen Removal from Synthetic Dye Wastewater in an Integrated Hydrolysis/Acidification and Anoxic/Aerobic Process

Mengqi Gu, Qidong Yin, Aike Liu, Guangxue Wu* Graduate School at Shenzhen, Tsinghua University 2018.10.15

Content

- 1. Background
- 2. Materials and Method
- 3. Results and Discussion
- 4. Conclusion

1. Background

1.2 Technology for color removal

■ Treatment of dyeing wastewater

Treatment — Physical: Flocculation & Precipitation

Biological: anaerobic, anoxic, aerobic

Chemical: Advanced oxidation

(Chandrakant et al., 2016; Wang et al., 2011)

- Dye degradation is based on the function of microorganisms
- Anoxic/aerobic is the most common process for dye degradation
- The color removal efficiency depends on the structure of microbes and the activity of enzymes

5

1.2 Technology for color removal

■ Biodegradation mechanism for azo dye

- Breaking the azo bond –N=N –
- Aromatic amine compounds generated with 4 electrons for breaking the azo bond in anaerobic process
- The intermediates can be removed by complete mineralization or autoxidation

1.2 Technology for color removal

- Biological treatment of azo dye
 - Biological treatment for azo dye usually needs long HRT, high COD
 - Color removal efficiency can not reach 100%

Reactor type	dye	Temperature (C)	HRT (h)	COD (mg/L)	Color removal(%)	Reference
SBR	DR80	35	48	500-3000	69.1-98.23	Kashif et al., 2015
ABR+ FAS	RR2	35	24	4000	89.5	Naimabadi et al., 2009
SBR	AR14	/	6	1000	85	Franca et al., 2015
SBR	Mixed	27	24	1017	70-80	Tomei et al., 2016
PBB	VBR	/	48	300	99.2	Chen et al., 2016

7

1.3 Enhanced nitrogen removal for dyeing wastewater

■ Biological nitrogen removal

Advantages of shortcut nitrification-denitrification for wastewater

(Abeling and Seyfried, 1992; Bernet et al., 2001; Fux et al., 2006; Wang and Yang, 2004)

1.3 Enhanced nitrogen removal for dyeing wastewater

■ Enhanced nitrogen removal by multiple AO process

To solve the lack of COD in influent of wastewater, the inhibition of NOB could enhance nitrogen removal through shortcut nitrification-denitrification with multiple AO process

Multiple AO operation mode could control microbial ecology and enhance nitrogen removal

1.4 Requirements and purposes for research

■ Technical requirements of biological treatment

• Color removal:

The lack of researches on the azo dye degradation pathway and the functional microbial community in biological treatment

• Nitrogen removal:

The lack of researches on the nitrogen removal and the application of shortcut nitrification-denitrification in dyeing wastewater treatment

1.4 Requirements and purposes for research

Purposes

- The system performance of hydrolysis/acidification and anoxic-aerobic(AO) treatment for azo dye wastewater
- The factors influencing color removal efficiency and the pathway of azo dye in hydrolysis/acidification process
- The factors influencing nitrogen removal in AO process
- The microbial community in the hydrolysis/acidification and AO process

1

2. Materials and Methods

2.1 Experimental setup Components Components Concentration Components Concentration (mg/L) (mg/L) NH₄Cl 114.6 NaHCO₃ 200 Azo dye (RR2) Sodium Acetate 30 51.28 KH₂PO₄ Starch 35.2 224.93 MgSO₄·7H₂O Peptone 100 109.09 Trace elements 1 mL/L $CaCl_2{\cdot}2H_2O$ 100 Mixed carbon source= 1:3:6 COD=400 mg/L Azo dye Reactive Red 2

2.2 Method

■ Methods

- COD, NH₄-N, NO₂-N, NO₃-N,MLSS, MLVSS: APHA
- Color: the absorption of azo dye RR2 in 512 nm

Color removal efficiency (%)= $(A0-A)/A0 \times 100$

A0: absorption of influent A: absorption of effluent

- QTOF detection: Combined Q-TOF MS (Agilent 6560 IM Q-TOF) and LC system (Agilent 1290 Infinity, USA) (LC-IM-QTOF-MS)
- Aniline: LC-MSMS, combined LC system (LC-20AD, Shimadzu, Japan) and mass spectrometer (API 3200, AB Sciex, U.S.)
- Microbial community: 16s rRNA Condition in mass spectrometer

Curtain Gas	10 psi
Collision Gas	6
IonSpray Voltage	5000 V
Temperature	400 °C
Ion Source Gas 1	60 psi
Ion Source Gas 2	60 psi

MRM condition for aniline

	Q1/Q3	DP	EP	CEP	CE	CXP
Quantitative Q1/Q3 transition	94.2/77.1	21.0	11.5	12.0	27.0	4.0
Qualitative Q1/Q3 transition	94.2/51.1	21.0	11.5	12.0	45.0	4.0

15

3. Results and Discussion

3.1 System performance ■ COD Concentration of COD did not change much in the hydrolysis/acidification process COD was removed in the denitrification process —■— Influent —— HA Effluent —— AO Effluent COD Color 0.22 190 185 0.20 (T/gm) 175 OO 170 0.18 (sq y 0.16 165 160 155 0.12 150 50 100 150 200 250 300 HA effluent Removal efficiency Influent AO Effluent (mg/L)(mg/L)(%) COD 381.5±27.7 178.1 ± 24.6 19.5±9.0 94.9 17

3.1 System performance

■ Nitrogen

	Influent	HA effluent	AO Effluent	Removal efficiency
	(mg/L)	(mg/L)	(mg/L)	(%)
NH ₄ -N	31.74±1.11	37.42 ± 1.39	5.23±4.29	83.5
NO ₂ -N	1.54 ± 0.84	0.03 ± 0.04	(11.03±3.96)	/
NO ₃ -N	2.72 ± 0.49	0.48 ± 0.19	4.39±5.72	1

- Nitrite accumulation
- Removal efficiency of total inorganic nitrogen (TIN): 42.6%

3.2 Color removal during hydrolysis/acidification

■ Effects of carbon source and temperature on color removal

Seed sludge: sludge from hydrolysis/acidification reactor under steady condition

Reaction volume: 500 mL

Mixing speed: 170 rpm

Temperature: 25 °C and 35 °C

Influent components: same as the reactor; carbon source (COD= 400 mg/L, Peptone, Starch and mixed carbon source); concentration (COD=200, 400, 800 mg/L, mixed carbon source=1:3:6)

21

COD removal

59.99

63.64

44.01

3.2 Color removal during hydrolysis/acidification

■ Effects of carbon source

- Degradation of RR2 was non-specific
- Degradation of RR2 fitted the first order kinetics equation
- When starch was used as carbon source, degradation rate was the fastest, followed by peptone and mixed carbon source

3.2 Color removal during hydrolysis/acidification

■ Effects of COD concentration and temperature

	1.0 T			1.0	35℃	
	Temperature	COD (mg/L)	First order kinetics equation	Degradation rate (mg/(L•h))	COD removal efficiency (%)	
010	25℃	800	$y=e^{-0.139x}$	4.17 ↑	57.46	
		400	$y=e^{-0.085x}$	2.55	59.99	
		200	$y=e^{-0.045x}$	1.35	57.86	
	35℃	800	$y=e^{-0.245x}$	7.35	45.05	
		400	$y=e^{-0.205x}$	6.15	54.02	
		200	y=e-0.149x	4.47	26.31	

- Degradation rate increased with increasing COD concentrations
- Degradation rate increased apparently with increasing temperature
- Temperature was the main factor affecting the azo dye degradation

23

3.3 Nitrogen removal during AO

■ Effects of RR2 and aniline on nitrification

Aniline (mg/L)	NH ₄ -N	R _{NH4-N} (mg/(gVSS·h))	NO ₃ -N	$R_{NO3-N} $ (mg/(gVSS·h))
0	y = -0.0763x + 27.41	1.38	y = 0.0784x + 3.41	1.42
0.75	y = -0.0852x + 27.03	1.31	y = 0.0978x + 1.88	1.51
1.5	y = -0.0541x + 28.19	0.98	y = 0.0542x + 2.66	0.98
3	y = -0.0507x + 28.66	0.92	y = 0.0415x + 2.37	0.75
4.5	y = -0.0478x + 27.24	0.74	y = 0.0415x + 1.54	0.64
6	y = -0.0345x + 26.71	0.53	y = 0.0345x + 1.39	0.53
7.5	y = -0.0371x + 28.65	0.57	y = 0.0356x + 2.18	0.55

- RR2 had no obvious effects on nitrification process
- Aniline could inhibit nitrification process
- When aniline reached 6 mg/L, nitrification was inhibited

3.5 Hydrolysis/acidification-multiple AO process

■ Microbial community

- The dominant bacteria in hydrolysis/acidification: *Elusimicrobia*, *Bacteroidetes*, *Chloroflexi*
- The dominant bacteria in AO: *Thauera, Sphingobacteriales* (denitrifying bacteria) and *Nitrospira, Nitrosomonadaceae* (nitrifying bacteria)

20

3.5 Hydrolysis/acidification-multiple AO process

■ Functional genes in hydrolysis/acidification

Desulfovibrio aminophilus, Thermoanaerobacter, Lactococcus raffinolactis, Ruminiclostridium and Rhodopirellula contained azoreductase, indicating that they had potential to degrade azo dye

3.5 Hydrolysis/acidification-multiple AO process

■ Functional genes in nitrogen metabolism

- Nitrification: Nitrosomonas, Nitrosospira, Comamonas, Thauera
- Denitrifictaion: Thauera, Candidatus Accumulibacter

31

4. Conclusion

4. Conclusion

- Hydrolysis/acidification-AO and hydrolysis/acidification-multiple AO process could treat dyeing wastewater efficiently
- The main factors affecting color removal were carbon source, COD concentration and temperature
- The main factors affecting nitrogen removal were azo dye, intermediates and DO
- The dominant bacteria for azo dye degradation were *Desulfovibrio* aminophilus, Thermoanaerobacter, Lactococcus raffinolactis, Ruminiclostridium and Rhodopirellula

33

Thank you for your kind attention!

