Zuckerberg Institute for Water Research at Ben-Gurion University of the Negev

Hydrothermal Carbonization of Human Excreta: Characterization and Potential Uses

By Reut Yahav Spitzer Advisor: Prof. Amit Gross

Objectives-Potential New Sanitation Treatment

Explore the properties and major chemical processes occurring during HTC of raw human excreta under typical solid content (e.g. 25% solids), Specifically:

- Aqueous and solid phases characterization
- Mass balances of C and N
- Potential use of aqueous phase as fertilizer
- Energy balance

(3315) –OH stretching; (2925,2850) asymmetric and symmetric –CH stretching; (1735) C=O stretching; (1705) carboxylic acid or ketone functional group (1650) C=O stretching of ketone and amide groups; (1550) –NH vibrations; (1465) O-CH₃.

Most of C retained in the solid phase Transformation of N from solid to aqueous phase

	Raw	180°C	210°C	240°C
рН	6.2	5.4	6.1	7.4
	±0.0	±0.1	±0.1	±0.0
EC	15.5	23.6	25.5	29.90
(mS/cm)	±0.4	±0.1	±0.4	±1.4
TN	4178	7801	8718	7908
(mg/L)	±400	±648	±489	±1501
P (mg/L)	982	1188	380	71
	±30	±45	±11	±8
K (mg/L)	4160	5707	6018	5585
	±79	±182	±271	±94
SAR	15	15	27	47
	±0.0	±0.0	±1	±6

To conclude

HTC could be used as a new sanitation alternative, at the same time potentially generating:

- Energy
- Liquid fertilizer

Summary and conclusions

- Pilot and laboratory scale HTC reactors obtained similar results
- Good correlation of severity factor vs. C content and calorific value
- Calorific value resemble sub-bituminous coal
- Decarboxylation is more pronounced than dehydration
- Raw human excreta- not under conventional classification of biomass
- High salinity, SAR, and nutrient values in the aqueous phase potential use as fertilizer after dilution
- Energy demand 17-27% of energy output

Further research and raised questions:

- What is the role and influence of oil phase on the physicochemical characteristic of hydrochar and aqueous phase?
- What are the combustion properties of the hydrochar? What is the environmental impact of its combustion?
- Better understand the coalification model and its ability to predict yield, calorific value and C content (specifically, the role of time) ?

Acknowledgments

- Amit Gross
- Vivian Mau
- Sofiya KolushevaRina Miaskowsky
- Poop volunteers Dr. Amos Rusak
- Angelin Ida
- My lab and office colleagues
- Uri Yogev
- Yaniv Kriger

Rosenzweig–Coopersmith Foundation

JMP WHO / UNICEF Joint Monitoring Programme (JMP) for Water Supply and Sanitation

Sanitation categories

"Improved" sanitation:

- Flush toilet [v]
- Piped sewer system [v]
- Septic tank [v]
- Flush/pour flush to pit latrine [v]
- Ventilated improved pit latrine (VIP) [v]
- Pit latrine with slab [v]
- Composting toilet [v]
- Special case [v]

"Unimproved" sanitation:

- Flush/pour flush to elsewhere [v]
- Pit latrine without slab [⊻]
- Bucket [v]
- Hanging toilet or hanging latrine [v]
- Shared sanitation [v]
- No facilities or bush or field [v]