

Fate	Fate of storm-water				
		Rural area	Urban area		
	Evaporation	50-70%	0-30%		
	Infiltration	25-35%	0-15%		
	Runoff	5-15%	50-100%		

An integrated concept: Water Sensitive Urban Design (WSUD)

Converting marginal water to precious resources that beautify and green the city and prevent pollution, flood damages, and micro-climate effects.

- Access to secured and clean water supply
- > Aesthetic & healthy aquatic ecosystems
- Effective sewerage, drainage, & flood management
- Moderation of urban heat
- > Improvement of the quality of public spaces

WSUD flexible approach

- ><u>Quality oriented treatment/reuse</u>: garden irrigation, aquifer recharge, toilet flushing, etc.
- <u>Multi-purpose design</u>: mitigate flood damages, beautify urban landscapes, improve micro-climate, and protect receiving waters (groundwater, streams, & beaches).
- Different urban scales ranging from households, street caps, and neighbourhoods(decentralization).
- ><u>Integration of new technologies</u> into existing and future infrastructure.

Advantage of <u>in-city</u> wastewater reuse and storm-water harvesting

Large sources of water are generated close to where it is needed

Unique Application in Israel (different from "conventional" bio-filters)

- The prolonged hot and dry periods in Israel that last 7-8 months each year require "bioirrigation" of bio-filters to preserve the biomass (plants and bacteria).
- Israel coastal aquifer is polluted with high levels of nitrate. Thus, the Israeli bio-filter will be a multipurpose tool.

The suggested solution

- A modified version of the bio-filter (hybrid):
 - 1. The dual-purpose system will harvest-treatrecharge stormwater, <u>during winter</u>.
 - 2. It will remediate nitrate contaminated groundwater <u>during</u> dry <u>summer</u> months.

Preli	Preliminary batch study: carbon source comparison				
	Methanol	Glucose	Starch	Cellulose	
Nitrate removal rate	26 ppm nitrate/day	50 ppm nitrate/day	46 ppm nitrate/day	27 ppm nitrate/day	
Nitrite formation	No	Accumulated	Accumulated	Νο	
TOC formation	40-50ppm	40-50ppm	40-50ppm	Low	
Ammonia formation	No	Very high	No	No	
Type of source	Liquid	Liquid	Solid	Solid	

nfluent properties* and effluent requirements					
	Inlet (mg/L)	Effluent required by regulation (mg/L)			
NO ₃	120	<50			
NO ₂	0	<3			
тос	0	-			
SO4	60-70	<250			
NH3	0	-			
*Tap water	enriched with nitrate				

Composition of inflow solution					
	Components			Design, mg/L	
				Humic	
	NH4Cl (ppm)	(ppm)	NaHCO3 (ppm)	acid (ppm)	Solute: 0.8DDW+0.2TW
Concentration	20	10	50	10	
тос	-	-	-	5	5
N	5.24	-	-	-	5
К	-	4.49	-	-	5
Р	-	1.77	-	-	2
Cl	13.26	-	-	-	20
Na	-	-	13.70	5	20
рН	5.23 6.81			7	
EC [µS/cm]	155.0		150		
Alkalinity	-	-	30 mg/L as CaCO3	-	30

Denitrification/Total-N removal

- No-plant columns: 0% removal (5 mg Ammonia-N converted to 5 mg Nitrate-N)
- Columns with plants: total-N removal > 80%

Conclusions

- In-city solutions (WSUD concept) based on wastewater recycling and storm-water harvesting, are simple means that can be applied easily in various scales.
- They offer many benefits:
 - Saving of water
 - Pollution prevention
 - Reducing the risk and damages of flooding
 - Sustaining evaporative cooling by green areas
 - Beautifying & greening the city

Conclusions - II

- A hybrid bio-filter can serve for both storm-water treatment and bioremediation of nitrate contaminated groundwater.
- The bio-filter incorporating cotton as a carbon source could remove nitrate to the desired concentration value of <50 mg/L, while at the same time very low concentrations of TOC and nitrite are emitted.
- Judicious design is required in order to prevent potential formation of nitrite and sulfide. The nitrite might be formed since it is an intermediate of the denitrification process.
- Complete removal of NOx might lead to two problems: a. leaching of organic matter; b. sulfide formation due to the transformation from anoxic to anaerobic conditions.

Conclusions - III

- In the mode of storm-water treatment, large unsaturated layer on top of the bio-filter enables to achieve complete nitrification.
- Plants on top of the bio-filter improve the removal of N and P compounds, and prevent clogging.
- Pilot-plant study showed that metals and pathogens are removed effectively in spite of the fluctuating storm events.
- It is more accurate to evaluate process efficiency on basis of contaminant load change, due to water loss by evaporation.

